Thank you for reporting, we will resolve it shortly
Q.
The solution set of $x\in \left(- \pi , \pi \right)$ for the inequality $sin 2 x + 1\leq cos x+2sin x$ is
NTA AbhyasNTA Abhyas 2020
Solution:
$2sin xcos x+1-cos x-2sin x\leq 0$
$\left(2 sin x - 1\right)\left(cos x - 1\right)\leq 0$
Case I: $cos x=1\Rightarrow x=0$
Case II: otherwise $cos x < 1$
$\Rightarrow 2sin x-1\geq 0\Rightarrow sin x\geq \frac{1}{2}$
$\Rightarrow x\in \left[\frac{\pi }{6} , \frac{5 \pi }{6}\right]$
Hence, from case I and case II,
$x\in \left[\frac{\pi }{6} , \frac{5 \pi }{6}\right]\cup\left\{0\right\}$