Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution set of the equation sin-1 x = 2 tan-1 x is
Q. The solution set of the equation
sin
−
1
x
=
2
tan
−
1
x
is
1902
189
AMU
AMU 2016
Inverse Trigonometric Functions
Report Error
A
{1,2}
19%
B
{-1,2}
0%
C
{-1,1,0}
44%
D
{1,1/2,0}
38%
Solution:
We have,
sin
−
1
x
=
2
tan
−
1
x
sin
−
1
x
=
sin
−
1
(
1
+
x
2
2
x
)
[
∵
2
tan
−
1
A
=
sin
−
1
(
1
+
A
2
2
A
)
]
⇒
x
=
1
+
x
2
2
x
⇒
x
(
1
+
x
2
)
=
2
x
⇒
x
+
x
3
−
2
x
=
0
⇒
x
3
−
x
=
0
⇒
x
(
x
2
−
1
)
=
0
⇒
x
=
0
or
x
2
−
1
=
0
⇒
x
=
0
or
x
2
−
1
=
0
⇒
x
=
0
or
x
2
=
1
⇒
x
=
0
or
x
=
±
1
∴
x
∈
{
0
,
−
1
,
1
}