Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution set of the equation $ \sin^{-1} x = 2 \tan^{-1} x $ is

AMUAMU 2016Inverse Trigonometric Functions

Solution:

We have,
$\sin ^{-1} x= 2 \tan ^{-1} x $
$\sin ^{-1} x=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
$ {\left[\because 2 \tan ^{-1} A=\sin ^{-1}\left(\frac{2 A}{1+A^{2}}\right)\right] }$
$\Rightarrow x=\frac{2 x}{1+x^{2}}$
$ \Rightarrow x\left(1+x^{2}\right)=2 x $
$ \Rightarrow x+x^{3}-2 x=0 $
$\Rightarrow x^{3}-x=0$
$ \Rightarrow x\left(x^{2}-1\right)=0$
$ \Rightarrow x=0 $ or $ x^{2}-1=0 $
$\Rightarrow x=0 $ or $ x^{2}-1=0 $
$ \Rightarrow x=0 $ or $x^{2}=1 $
$ \Rightarrow x=0 $ or $ x=\pm 1 $
$ \therefore x \in\{0,-1,1\}$