Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (dy/dx) + (y/2) sec x = ( tan x/2y), where 0 ≤ x < (π/2), and y (0) = 1, is given by:
Q. The solution of the differential equation
d
x
d
y
+
2
y
sec
x
=
2
y
t
a
n
x
, where
0
≤
x
<
2
π
, and
y
(
0
)
=
1
, is given by:
7438
202
JEE Main
JEE Main 2016
Differential Equations
Report Error
A
y
=
1
−
s
e
c
x
+
t
a
n
x
x
5%
B
y
2
=
1
−
s
e
c
x
+
t
a
n
x
x
57%
C
y
2
=
1
−
s
e
c
x
+
t
a
n
x
x
29%
D
y
=
1
+
s
e
c
x
+
t
a
n
x
x
10%
Solution:
2y
d
x
d
y
+
y
2
sec
x
=
tan
x
put
y
2
=
t
⇒
2y
d
x
d
y
=
d
x
d
t
d
x
d
t
+
t
sec
x
=
tan
x
I.F.
=
e
[
s
e
c
x
d
x
=
e
ℓ
n
(
s
e
c
x
+
t
a
n
x
)
=
sec
x
+
tan
x
t
.
(
sec
x
+
tan
x
)
=
∫
(
sec
x
+
tan
x
)
tan
x
d
x
=
∫
sec
x
tan
x
d
x
+
∫
tan
2
x
d
x
y
2
(
sec
x
+
tan
x
)
=
sec
x
+
tan
x
−
x
+
c
y
(
0
)
=
1
⇒
c
=
0
⇒
y
2
=
1
−
s
e
c
x
+
t
a
n
x
x