Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\frac{dy}{dx} + \frac{y}{2} \sec x = \frac{\tan x}{2y}$, where $0 \leq x < \frac{\pi}{2}$, and $y (0) = 1$, is given by:

JEE MainJEE Main 2016Differential Equations

Solution:

2y $\frac{d y}{d x}+y^{2} \sec x=\tan x$
put $y^{2}=t $
$\Rightarrow $ 2y $\frac{d y}{d x}=\frac{d t}{d x}$
$\frac{d t}{d x}+t \,\sec\, x=\tan \,x$
I.F. $=e^{[\sec\, x d x} = e ^{\ell n(\sec x+\tan x)}=\sec x+\tan x $
$ t. (\sec x+\tan x) =\int(\sec x+\tan x) \tan x d x$
$=\int \sec x \tan x d x+\int \tan ^{2} x d x $
$ y^{2}(\sec x+\tan x) =\sec x+\tan x-x+c $
$y(0)=1 $
$ \Rightarrow c=0 $
$ \Rightarrow y^{2}=1-\frac{x}{\sec x+\tan x} $