Q.
The solution of the differential equation dxdy=2x+2y+3x+y+7 is
1632
216
Rajasthan PETRajasthan PET 2005
Report Error
Solution:
Given, dxdy=2x+2y+3x+y+7 ...(i)
Let x+y=v⇒dxdy+1=dxdv ⇒dxdy=dxdv−1
On putting this value in Eq. (i), we get dxdv−1=2v+3v+7 ⇒dxdv=2v+3v+7⇒dxdv=2v+3v+7+2v+3 ⇒dxdv=2v+33v+10 ⇒3v+102v+3dv=dx ⇒(32−3(3v+10)11dv)=dx ⇒32dv−3(3v+10)11dv=dx
On integrating, we get 32v=−311log(3v+10).31+c1=x ⇒6v−11log(3v+10)9c1=9x ⇒6(x+y)−11log{3(x+y)+10}=9x−9c1 ⇒6(x+y)−11log(3x+3y+10)=9x−c
where c=−9c1