Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $ \frac{dy}{dx}=\frac{x+y+7}{2x+2y+3} $ is

Rajasthan PETRajasthan PET 2005

Solution:

Given, $ \frac{dy}{dx}=\frac{x+y+7}{2x+2y+3} $ ...(i)
Let $ x+y=v $ $ \Rightarrow $ $ \frac{dy}{dx}+1=\frac{dv}{dx} $
$ \Rightarrow $ $ \frac{dy}{dx}=\frac{dv}{dx}-1 $
On putting this value in Eq. (i), we get $ \frac{dv}{dx}-1=\frac{v+7}{2v+3} $
$ \Rightarrow $ $ \frac{dv}{dx}=\frac{v+7}{2v+3} $ $ \Rightarrow $ $ \frac{dv}{dx}=\frac{v+7+2v+3}{2v+3} $
$ \Rightarrow $ $ \frac{dv}{dx}=\frac{3v+10}{2v+3} $
$ \Rightarrow $ $ \frac{2v+3}{3v+10}dv=dx $
$ \Rightarrow $ $ \left( \frac{2}{3}-\frac{11}{3(3v+10)}dv \right)=dx $
$ \Rightarrow $ $ \frac{2}{3}dv-\frac{11}{3(3v+10)}dv=dx $
On integrating, we get
$ \frac{2}{3}v=-\frac{11}{3}\log (3v+10).\frac{1}{3}+{{c}_{1}}=x $
$ \Rightarrow $ $ 6v-11\log (3v+10)9{{c}_{1}}=9x $
$ \Rightarrow $ $ 6(x+y)-11\log \{3(x+y)+10\}=9x-9{{c}_{1}} $
$ \Rightarrow $ $ 6(x+y)-11\log (3x+3y+10)=9x-c $
where $ c=-9{{c}_{1}} $