Q.
The solution of the differential equation dxdy+1−x2xy=xy,(∣x∣<1) is y=−3f(x)+C(1−x2)41, where f(21)=43 and C is an arbitrary constant. Then, the value of f(−21) is
4991
213
NTA AbhyasNTA Abhyas 2020Differential Equations
Report Error
Solution:
Given equation is y1dxdy+1−x2xy=x
Let, 2y=ν ⇒y1dxdy=dxdν
Thus, we have dxdν+2(1−x2)xν=x ∴ I.F. =e∫2(1−x2)xdx =e∫4(1−x2)−d(1−x2) =e−41ln(1−x2) =(1−x2)−41
Thus, the solution is ν(1−x2)−41=∫x(1−x2)−41dx
or ν⋅(1−x2)−41=−32(1−x2)43+C′
or 2y=−32(1−x2)+C′(1−x2)41 ⇒y=−3(1−x2)+C(1−x2)41 ⇒f(x)=1−x2 ⇒f(−21)=1−41=43