Q. The solution of the differential equation $\frac{d y}{d x}+\frac{x y}{1 - x^{2}}=x\sqrt{y},$ $\left(\left|x\right| < 1\right)$ is $\sqrt{y}=-\frac{f \left(x\right)}{3}+C\left(1 - x^{2}\right)^{\frac{1}{4}},$ where $f\left(\frac{1}{2}\right)=\frac{3}{4}$ and $C$ is an arbitrary constant. Then, the value of $f\left(- \frac{1}{2}\right)$ is
NTA AbhyasNTA Abhyas 2020Differential Equations
Solution: