Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of the differential equation (d y/d x)=1- cos (y-x) cot (y-x) is
Q. The solution of the differential equation
d
x
d
y
=
1
−
cos
(
y
−
x
)
cot
(
y
−
x
)
is
1770
214
TS EAMCET 2019
Report Error
A
x
tan
(
y
−
x
)
=
c
B
x
=
tan
(
y
−
x
)
+
c
C
x
=
sec
(
y
−
x
)
+
c
D
x
+
sec
(
y
−
x
)
=
c
Solution:
We have,
d
x
d
y
=
1
−
cos
(
y
−
x
)
cot
(
y
−
x
)
Put
y
−
x
=
v
⇒
d
x
d
y
=
1
+
d
x
d
v
∴
1
+
d
x
d
v
=
1
−
cos
v
cot
v
⇒
d
x
d
v
=
−
s
i
n
v
c
o
s
2
v
⇒
−
∫
c
o
s
2
v
s
i
n
v
d
v
=
∫
d
x
⇒
−
∫
sec
v
tan
v
d
v
=
d
x
⇒
−
sec
v
=
x
+
c
⇒
x
+
sec
(
y
−
x
)
=
c