Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of the differential equation $\frac{d y}{d x}=1-\cos (y-x) \cot (y-x)$ is

TS EAMCET 2019

Solution:

We have,
$ \frac{d y}{d x}=1-\cos (y-x) \cot (y-x) $
Put $ y -x=v$
$ \Rightarrow \, \frac{d y}{d x}=1+\frac{d v}{d x} $
$\therefore \, 1+ \frac{d v}{d x}=1-\cos v \cot v$
$ \Rightarrow \,\frac{d v}{d x}=-\frac{\cos ^{2} v}{\sin v} $
$\Rightarrow \, -\int \frac{\sin v}{\cos ^{2} v} d v=\int d x$
$ \Rightarrow -\int \sec v \tan v d v=d x $
$\Rightarrow \,-\sec v=x+c$
$ \Rightarrow \,x+\sec (y-x)=c$