(1+y2)+(x−etan−1y)dxdy=0 ⇒dxdy+1+y2x=1+y2etan−1y
This is linear in x. [Type dxdy+Px=Q] ∫pdy=∫1+y2dy=tan−1y ∴e∫pdy=etan−1y ∴ Sol. is x.etan−1y=∫etan−1y⋅1+y2etan−1ydy+C
Put tan−1y=z ∴1+y2dy=dz ∴xetan−1y=∫e2zdz+C=21e2z+C =21e2tan−1y+K [where 2C=K]