Thank you for reporting, we will resolve it shortly
Q.
The solution of the differential equation (1+y2)+(x−etan−1y)dydx=0 is
Differential Equations
Solution:
(1+y2)+(x−etan−1y)dydx=0 ⇒dydx+x1+y2=etan−1y1+y2
This is linear in x. [Type dydx+Px=Q] ∫pdy=∫dy1+y2=tan−1y ∴ \therefore Sol. is x.e^{tan^{-1}\,y}=\int\,e^{tan^{-1}\,y}\cdot \frac{e^{tan^{-1}\,y}}{1+y^{2}}dy+C
Put tan^{-1}\, y = z \therefore \frac{dy}{1+y^{2}} = dz \therefore x\,e^{tan^{-1}\,y}=\int \,e^{2\,z}dz + C = \frac{1}{2}e^{2z}+C = \frac{1}{2}e^{2\,tan^{-1}\,y}+K [where 2C = K]