Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of cos y (d y/d x)=ex+ sin y+x2 e sin y is f(x)+e- sin y=C(C is arbitrary real constant) where f(x) is equal to
Q. The solution of
cos
y
d
x
d
y
=
e
x
+
s
i
n
y
+
x
2
e
s
i
n
y
is
f
(
x
)
+
e
−
s
i
n
y
=
C
(
C
is arbitrary real constant) where
f
(
x
)
is equal to
197
194
WBJEE
WBJEE 2022
Report Error
A
e
x
+
2
1
x
3
B
e
−
x
+
3
1
x
3
C
e
−
x
+
2
1
x
3
D
e
x
+
3
1
x
3
Solution:
−
e
−
s
i
n
y
cos
y
d
x
d
y
=
−
[
e
x
+
x
2
]
⇒
d
(
e
−
s
i
n
y
)
+
(
e
x
+
x
2
)
d
x
=
0
⇒
e
−
s
i
n
y
+
e
x
+
3
x
3
=
C