Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The solution of $\cos y \frac{d y}{d x}=e^{x+\sin y}+x^2 e^{\sin y}$ is $f(x)+e^{-\sin y}=C(C$ is arbitrary real constant) where $f(x)$ is equal to

WBJEEWBJEE 2022

Solution:

$-e^{-\sin y} \cos y \frac{d y}{d x}=-\left[e^x+x^2\right] $
$\Rightarrow d\left(e^{-\sin y}\right)+\left(e^x+x^2\right) d x=0$
$ \Rightarrow e^{-\sin y}+e^x+\frac{x^3}{3}=C$