Let y=emx be the solution of given differential equation, ⇒dxdy=memx ⇒dx2d2y=m2emx ∴25dx2d2y−10dxdy+y=0 ⇒25m2emx−10memx+emx=0 ⇒emx(25m2−10m+1)=0 ⇒ Auxiliary equation ⇒25m2−10m+1=0 emx=0 ⇒(5m)2−2(5m)×1+1=0 ⇒(5m−1)2=0 ⇒m=51,51
Since, roots are real and equal. ∴ General solution is y=(c1+c2x)ex/5 ... (i) y(0)=1⇒c1=1 y(1)=2e1/5⇒2e1/5=(c1+c2)e1/5 ⇒c1+c2=2 ⇒c1=1
Putting the value of c1 and c2 in Eq. (i), we get particular solution y=(1+x)ex/5