Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution of 25(d2y/dx2)-10 (dy/dx)+y=0, y(0) =1, y(1)=2e(1/5) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The solution of $25\frac{d^{2}y}{dx^{2}}-10 \frac{dy}{dx}+y=0, \, y\left(0\right) =1, \, y\left(1\right)=2e^{\frac{1}{5}} $ is
WBJEE
WBJEE 2012
Differential Equations
A
$y=e^{5x} +e^{-5x} $
B
$y=\left(1+x\right)e^{5x} $
C
$y=\left(1+x\right)e^{\frac{x}{5}} $
D
$y=\left(1+x\right)e ^{\frac{-x}{5}}$
Solution:
Let $y=e^{m x}$ be the solution of given differential equation,
$\Rightarrow \frac{d y}{d x} =m e^{m x}$
$\Rightarrow \frac{d^{2} y}{d x^{2}}=m^{2} e^{m x}$
$\therefore 25 \frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+y=0$
$\Rightarrow 25 m^{2} e^{m x}-10 m e^{m x}+e^{m x}=0$
$\Rightarrow e^{m x}\left(25 m^{2}-10 m+1\right)=0$
$\Rightarrow $ Auxiliary equation
$\Rightarrow 25 m^{2}-10 m+1=0$
$e^{m x} \neq 0$
$\Rightarrow (5 m)^{2}-2(5 m) \times 1+1=0$
$\Rightarrow (5 m-1)^{2}=0$
$\Rightarrow m=\frac{1}{5}, \frac{1}{5}$
Since, roots are real and equal.
$\therefore $ General solution is $y=\left(c_{1}+c_{2} x\right) e^{x / 5}$ ... (i)
$y(0)=1 \Rightarrow c_{1}=1$
$y(1)= 2 e^{1 / 5} \Rightarrow 2 e^{1 / 5}=\left(c_{1}+c_{2}\right) e^{1 / 5}$
$\Rightarrow c_{1}+c_{2}=2$
$\Rightarrow c_{1}=1$
Putting the value of $c_{1}$ and $c_{2}$ in Eq. (i), we get particular solution
$y=(1+x) e^{x / 5}$