Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The solution curve of the differential equation. (1+ e - x )(1+ y 2) ( dy / dx )= y 2, which passes through the point (0,1), is :
Q. The solution curve of the differential equation.
(
1
+
e
−
x
)
(
1
+
y
2
)
d
x
d
y
=
y
2
,
which passes through the point
(
0
,
1
)
,
is :
3389
212
JEE Main
JEE Main 2020
Differential Equations
Report Error
A
y
2
=
1
+
y
lo
g
e
(
2
1
+
e
x
)
50%
B
y
2
+
1
=
y
(
lo
g
e
(
2
1
+
e
x
)
+
2
)
0%
C
y
2
=
1
+
y
lo
g
e
(
2
1
+
e
−
x
)
25%
D
y
2
+
1
=
y
(
lo
g
e
(
2
1
+
e
−
x
)
+
2
)
25%
Solution:
(
1
+
e
−
x
)
(
1
+
y
2
)
d
x
d
y
=
y
2
⇒
(
1
+
y
−
2
)
d
y
=
(
1
+
e
x
e
x
)
d
x
⇒
(
y
−
y
1
)
=
ln
(
1
+
e
x
)
+
c
∴
It passes through
(
0
,
1
)
⇒
c
=
−
ln
2
⇒
y
2
=
1
+
y
ln
(
2
1
+
e
x
)