Thank you for reporting, we will resolve it shortly
Q.
The solution curve of the differential equation.
$\left(1+ e ^{- x }\right)\left(1+ y ^{2}\right) \frac{ dy }{ dx }= y ^{2},$
which passes through the point $(0,1),$ is :
$\left(1+ e ^{-x}\right)\left(1+ y ^{2}\right) \frac{ dy }{ dx }= y ^{2}$
$\Rightarrow \left(1+y^{-2}\right) d y=\left(\frac{e^{x}}{1+e^{x}}\right) d x$
$\Rightarrow \left(y-\frac{1}{y}\right)=\ln \left(1+e^{x}\right)+c$
$\therefore $ It passes through $(0,1)$
$\Rightarrow c=-\ln 2$
$\Rightarrow \,\,\,\ y^{2}=1+y \ln \left(\frac{1+e^{x}}{2}\right)$