Q.
The slope of the tangent to a curve C : y=y(x) at any point [x,y) on it is 2+9e−2x2e2x−6e−x+9. If C passes through the points (0,21+22π) and (α,21e2α) then eα is equal to :
dxdy=2+9e−2x2e2x−6e−x+9 dxdy=e2x−2e2x+96ex y=2e2x−tan−1(32ex)+c
If C passes through the point (0,21+22π) c=−4π−tan−132
Again C passes through the point (α,21e2α)
then eα=23(3−23+2)