Q. The slope of the tangent to a curve C : $y=y(x)$ at any point $[x, y)$ on it is $\frac{2 e ^{2 x }-6 e ^{- x }+9}{2+9 e ^{-2 x }}$. If $C$ passes through the points $\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right)$ and $\left(\alpha, \frac{1}{2} e ^{2 \alpha}\right)$ then $e ^\alpha$ is equal to :
Solution: