Shortest distance between two lines a1x−x1=a2y−y1=a3z−z1& b1x−x2=b2y−y2=b3z−z2 is given as (a1b3−a3b2)2+(a1b3−a3b1)2+(a1b2−a2b1)2∣∣x1−x2a1b1y1−y2a2b2z1−z2a3b3∣∣ (−10+12)2+(−5+3)2+(4−2)2∣∣5−(3)112−(−5)244−1−3−5∣∣ (2)2+(2)2+(2)2∣∣8117243−3−5∣∣ =4+4+4∣8(−10+12)−7(−5+3)+3(4−2)∣ =1216+14+6=1236=2336 =318=63