Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The shortest distance between the lines (x-5/1)=(y-2/2)=(z-4/-3) and (x+3/1)=(y+5/4)=(z-1/-5) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The shortest distance between the lines $\frac{x-5}{1}=\frac{y-2}{2}=\frac{z-4}{-3}$ and $\frac{x+3}{1}=\frac{y+5}{4}=\frac{z-1}{-5}$ is
JEE Main
JEE Main 2023
Three Dimensional Geometry
A
$7 \sqrt{3}$
6%
B
$6 \sqrt{3}$
82%
C
$4 \sqrt{3}$
12%
D
$5 \sqrt{3}$
0%
Solution:
Shortest distance between two lines
$\frac{x-x_1}{a_1}=\frac{y-y_1}{a_2}=\frac{z-z_1}{a_3} \&$
$\frac{x-x_2}{b_1}=\frac{y-y_2}{b_2}=\frac{z-z_2}{b_3}$ is given as
$\frac{\begin{vmatrix}x_1-x_2 & y_1-y_2 & z_1-z_2 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3\end{vmatrix}}{\sqrt{\left(a_1 b_3-a_3 b_2\right)^2+\left(a_1 b_3-a_3 b_1\right)^2+\left(a_1 b_2-a_2 b_1\right)^2}}$
$\frac{\begin{vmatrix}5-(3) & 2-(-5) & 4-1 \\ 1 & 2 & -3 \\ 1 & 4 & -5\end{vmatrix}}{\sqrt{(-10+12)^2+(-5+3)^2+(4-2)^2}}$
$\frac{\begin{vmatrix}8 & 7 & 3 \\ 1 & 2 & -3 \\ 1 & 4 & -5\end{vmatrix}}{\sqrt{(2)^2+(2)^2+(2)^2}}$
$ =\frac{|8(-10+12)-7(-5+3)+3(4-2)|}{\sqrt{4+4+4}} $
$ =\frac{16+14+6}{\sqrt{12}}=\frac{36}{\sqrt{12}}=\frac{36}{2 \sqrt{3}} $
$ =\frac{18}{\sqrt{3}}=6 \sqrt{3}$