P1=2x+y+z−1=0 P2=3x+y+2z−2=0
The line of intersection is parallel to ∣∣i^23j^11k^12∣∣=i^−j^−k^
For the point on the line, putting z=0, we get 2x+y=13x+y=2}x=1,y=−1
So, the required point is (1,−1,0)
Hence, the equation of the line of intersection is 1x−1=−1y+1=−1z−0
Let, a→=i^−j^ b→=i^−j^−k^ c→=0→ d→=i^−j^−k^ c→−a→=−i^+j^ b→×d→=−2j^+2k^
Shortest distance =∣∣∣∣b→×d→∣∣(c→−a→)⋅(b→×d→)∣∣ =∣∣22−2∣∣=21