Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The shortest distance between the line x=y=z and the line of intersection of 2x+y+z-1=0 and 3x+y+2z-2=0 is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The shortest distance between the line $x=y=z$ and the line of intersection of $2x+y+z-1=0$ and $3x+y+2z-2=0$ is
NTA Abhyas
NTA Abhyas 2020
A
$\frac{1}{\sqrt{2}}$ units
B
$\frac{1}{\sqrt{3}}$ units
C
$\frac{1}{\sqrt{4}}$ units
D
$\frac{1}{\sqrt{5}}$ units
Solution:
$P_{1}=2x+y+z-1=0$
$P_{2}=3x+y+2z-2=0$
The line of intersection is parallel to
$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 3 & 1 & 2 \end{vmatrix}=\hat{i}-\hat{j}-\hat{k}$
For the point on the line, putting $z=0,$ we get $\left.\begin{array}{l}2 x+y=1 \\ 3 x+y=2\end{array}\right\} x=1, y=-1$
So, the required point is $\left(1 , - 1,0\right)$
Hence, the equation of the line of intersection is
$\frac{x - 1}{1}=\frac{y + 1}{- 1}=\frac{z - 0}{- 1}$
Let, $\overset{ \rightarrow }{a}=\hat{i}-\hat{j}$
$\overset{ \rightarrow }{b}=\hat{i}-\hat{j}-\hat{k}$
$\overset{ \rightarrow }{c}=\overset{ \rightarrow }{0}$
$\overset{ \rightarrow }{d}=\hat{i}-\hat{j}-\hat{k}$
$\overset{ \rightarrow }{c}-\overset{ \rightarrow }{a}=-\hat{i}+\hat{j}$
$\overset{ \rightarrow }{b}\times \overset{ \rightarrow }{d}=-2\hat{j}+2\hat{k}$
Shortest distance $=\left|\frac{\left(\overset{ \rightarrow }{c} - \overset{ \rightarrow }{a}\right) \cdot \left(\overset{ \rightarrow }{b} \times \overset{ \rightarrow }{d}\right)}{\left|\overset{ \rightarrow }{b} \times \overset{ \rightarrow }{d}\right|}\right|$
$=\left|\frac{- 2}{2 \sqrt{2}}\right|=\frac{1}{\sqrt{2}}$