Q.
The set of all values of t∈R, for which the matrix ⎣⎡etetete−t(sint−2cost)e−t(2sint+cost)e−tcoste−t(−2sint−cost)e−t(sint−2cost)e−tsint⎦⎤
is invertible, is
If its invertible, then determinant value =0
So, ∣∣etetete−t(sint−2cost)e−t(2sint+cost)e−tcoste−t(−2sint−cost)e−t(sint−2cost)e−tsint∣∣=0 ⇒et⋅e−t⋅e−t∣∣111sint−2cost2sint+costcost−2sint−costsint−2costsint∣∣=0
Applying, R1→R1−R2 then R2→R2−R3
We get e−t∣∣001−sint−cost2sintcost−3sint+cost−2costsint∣∣=0
By expanding we have, e−t×1(2sintcost+6cos2t+6sin2t−2sintcost)=0 ⇒e−t×6=0 for ∀t∈R