Q.
The set of all values of $t \in R$, for which the matrix
$
\begin{bmatrix}
e^t & e^{-t}(\sin t-2 \cos t) & e^{-t}(-2 \sin t-\cos t) \\
e^t & e^{-t}(2 \sin t+\cos t) & e^{-t}(\sin t-2 \cos t) \\
e^t & e^{-t} \cos t & e^{-t} \sin t
\end{bmatrix}
$
is invertible, is
Solution: