Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The roots of (x-41)49+(x-49)41+(x-2009)2009=0 are
Q. The roots of
(
x
−
41
)
49
+
(
x
−
49
)
41
+
(
x
−
2009
)
2009
=
0
are
1826
177
KVPY
KVPY 2010
Report Error
A
all necessarily real
B
non-real except one positive real root
C
non-real except three positive real roots
D
non-real except for three real roots of which exactly one is positive
Solution:
We have,
(
x
−
41
)
49
+
(
x
−
49
)
41
+
(
x
−
2009
)
2009
=
0
Let
f
(
x
)
=
(
x
−
41
)
49
+
(
x
−
49
)
41
+
(
x
−
2009
)
2009
⇒
f
′
(
x
)
=
49
(
x
−
41
)
48
+
41
(
x
−
49
)
40
+
2009
(
x
−
2009
)
2008
Here,
f
′
(
x
)
>
0
,
∀
x
∈
R
∴
f
(
x
)
is monotonic increasing function
Hence,
f
(
x
)
has only one real root