Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The roots of $(x-41)^{49}+(x-49)^{41}+(x-2009)^{2009}=0$ are

KVPYKVPY 2010

Solution:

We have,
$(x-41)^{49}+(x-49)^{41}+(x-2009)^{2009}=0$
Let $f(x)=(x-41)^{49}+(x-49)^{41}+(x-2009)^{2009}$
$\Rightarrow f'(x) =49(x-41)^{48}+41(x-49)^{40}+2009(x-2009)^{2008}$
Here, $f'(x) >\,0, \forall\, x \, \in R$
$\therefore f (x)$ is monotonic increasing function
Hence, $f (x)$ has only one real root