Q.
The product of the slopes of the common tangents of the ellipse x2+4y2=16 and the parabola y2−4x−4=0 is
2406
243
NTA AbhyasNTA Abhyas 2020Conic Sections
Report Error
Solution:
Given, ellipse: 16x2+4y2=1 and parabola: y2=4(x+1)
Putting x+1=X and Y=y , we get, Y2=4X
So, the equation of the tangent is Y=mX+m1=m(x+1)+m1 Y=mx+(m+m1)…(i)
If (i) is also a tangent to 16x2+4y2=1 ,
then, c2=a2m2+b2 ⇒(m+m1)2=16m2+4 ⇒m2+m21+2=16m2+4 ⇒15m2−m21+2=0
Let, m2=t>0 ⇒15t2+2t−1=0 ⇒t=51,3−1⇒m2=51
Hence, m=±51