Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The product of the slopes of the common tangents of the ellipse $x^{2}+4y^{2}=16$ and the parabola $y^{2}-4x-4=0$ is

NTA AbhyasNTA Abhyas 2020Conic Sections

Solution:

Given, ellipse: $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ and parabola: $y^{2}=4\left(x + 1\right)$
Putting $x+1=X$ and $Y=y$ , we get,
$Y^{2}=4X$
So, the equation of the tangent is $Y=mX+\frac{1}{m}=m\left(x + 1\right)+\frac{1}{m}$
$Y=mx+\left(m + \frac{1}{m}\right)\ldots \left(i\right)$
If $\left(i\right)$ is also a tangent to $\frac{x^{2}}{16}+\frac{y^{2}}{4}=1$ ,
then, $c^{2}=a^{2}m^{2}+b^{2}$
$\Rightarrow \left(m + \frac{1}{m}\right)^{2}=16m^{2}+4$
$\Rightarrow m^{2}+\frac{1}{m^{2}}+2=16m^{2}+4$
$\Rightarrow 15m^{2}-\frac{1}{m^{2}}+2=0$
Let, $m^{2}=t>0$
$\Rightarrow 15t^{2}+2t-1=0$
$\Rightarrow t=\frac{1}{5},\frac{- 1}{3}\Rightarrow m^{2}=\frac{1}{5}$
Hence, $m=\pm\sqrt{\frac{1}{5}}$