Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The product of matrices A=[ cos 2 θ cos θ sin θ cos θ sin θ sin 2 θ] and sin B=[ cos 2 φ cos φ sin φ cos φ sin φ sin 2 φ] is a null matrix if θ-φ=
Q. The product of matrices
A
=
[
cos
2
θ
cos
θ
sin
θ
cos
θ
sin
θ
sin
2
θ
]
and
sin
B
=
[
cos
2
ϕ
cos
ϕ
sin
ϕ
cos
ϕ
sin
ϕ
sin
2
ϕ
]
is a null matrix if
θ
−
ϕ
=
680
165
Matrices
Report Error
A
2
nπ
,
n
∈
Z
3%
B
n
2
π
,
n
∈
Z
3%
C
(
2
n
+
1
)
2
π
,
n
∈
Z
90%
D
nπ
,
n
∈
Z
5%
Solution:
A
B
=
[
cos
2
θ
cos
θ
sin
θ
cos
θ
sin
θ
sin
2
θ
]
[
cos
2
ϕ
cos
ϕ
sin
ϕ
cos
ϕ
sin
ϕ
sin
2
ϕ
]
=
[
cos
θ
cos
ϕ
(
cos
(
θ
−
ϕ
))
sin
θ
cos
ϕ
(
cos
(
θ
−
ϕ
))
cos
θ
sin
ϕ
(
cos
(
θ
−
ϕ
))
sin
θ
sin
ϕ
(
cos
(
θ
−
ϕ
))
]
=
(
cos
(
θ
−
ϕ
))
[
cos
θ
cos
ϕ
sin
θ
cos
ϕ
cos
θ
sin
ϕ
sin
θ
sin
ϕ
]
Now
A
B
=
O
⇒
cos
(
θ
−
ϕ
)
=
0
⇒
θ
−
ϕ
=
(
2
n
+
1
)
2
π
,
n
∈
Z