Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The product of matrices $A=\begin{bmatrix}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{bmatrix}$ and $\sin B=\begin{bmatrix}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{bmatrix}$ is a null matrix if $\theta-\phi=$

Matrices

Solution:

$A B=\begin{bmatrix}\cos ^{2} \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin ^{2} \theta\end{bmatrix}\begin{bmatrix}\cos ^{2} \phi & \cos \phi \sin \phi \\ \cos \phi \sin \phi & \sin ^{2} \phi\end{bmatrix}$
image
$=\begin{bmatrix}\cos \theta \cos \phi(\cos (\theta-\phi)) & \cos \theta \sin \phi(\cos (\theta-\phi)) \\ \sin \theta \cos \phi(\cos (\theta-\phi)) & \sin \theta \sin \phi(\cos (\theta-\phi))\end{bmatrix}$
$=(\cos (\theta-\phi))\begin{bmatrix}\cos \theta \cos \phi & \cos \theta \sin \phi \\ \sin \theta \cos \phi & \sin \theta \sin \phi\end{bmatrix}$
Now $A B=O \Rightarrow \cos (\theta-\phi)=0$
$\Rightarrow \theta-\phi=(2 n+1) \frac{\pi}{2}, n \in Z$