Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The perpendicular distance from the origin to the normal drawn at any point on the curve x=a( cos θ+θ sin θ), y=a( sin θ-θ cos θ) is
Q. The perpendicular distance from the origin to the normal drawn at any point on the curve
x
=
a
(
cos
θ
+
θ
sin
θ
)
,
y
=
a
(
sin
θ
−
θ
cos
θ
)
is
2250
199
TS EAMCET 2020
Report Error
A
a
θ
B
a
2
C
a
D
θ
a
Solution:
Given,
x
=
a
(
cos
θ
+
θ
sin
θ
)
and
y
=
a
(
sin
θ
−
θ
cos
θ
)
Now,
d
x
d
y
=
d
θ
d
y
⋅
d
x
d
θ
=
tan
θ
=
Slope of tangent
∴
d
θ
d
x
=
d
θ
d
(
a
c
o
s
θ
+
a
θ
s
i
n
θ
)
=
d
θ
d
(
a
c
o
s
θ
)
+
d
θ
d
(
a
θ
s
i
n
θ
)
=
a
(
−
sin
θ
)
+
a
d
θ
d
(
θ
s
i
n
θ
)
=
−
a
sin
θ
+
a
[
sin
θ
d
θ
d
(
θ
)
+
θ
d
θ
d
(
sin
θ
)
]
=
−
a
sin
θ
+
a
sin
θ
+
a
θ
cos
θ
=
a
θ
cos
θ
Now,
d
θ
d
y
=
d
θ
d
(
a
s
i
n
θ
−
a
θ
c
o
s
θ
)
=
d
θ
d
(
a
s
i
n
θ
)
−
d
θ
d
(
a
θ
c
o
s
θ
)
=
a
cos
θ
−
a
d
θ
d
(
θ
c
o
s
θ
)
=
a
cos
θ
−
a
[
cos
θ
d
θ
d
(
θ
)
+
θ
d
θ
d
(
cos
θ
)
]
=
a
cos
θ
−
a
cos
θ
+
a
θ
sin
θ
=
a
θ
sin
θ
Now,
d
x
d
y
=
a
θ
c
o
s
θ
a
θ
s
i
n
θ
=
tan
θ
∴
Required equation of Normal
(
y
−
a
sin
θ
+
a
θ
cos
θ
)
=
s
i
n
θ
−
c
o
s
θ
(
x
−
a
cos
θ
−
a
θ
sin
θ
)
⇒
sin
θ
(
y
−
a
sin
θ
+
a
θ
cos
θ
)
=
−
cos
θ
(
x
−
a
cos
θ
−
a
θ
sin
θ
)
⇒
y
sin
θ
−
a
sin
2
θ
+
x
cos
θ
−
a
cos
2
θ
=
a
θ
sin
θ
cos
θ
−
a
θ
sin
θ
cos
θ
⇒
y
sin
θ
+
x
cos
θ
−
a
(
1
)
=
0
⇒
x
cos
θ
+
y
sin
θ
−
a
=
0
So, perpendicular distance from origin,
d
=
c
o
s
2
θ
+
s
i
n
2
θ
∣
c
o
s
θ
(
0
)
+
s
i
n
θ
⋅
(
0
)
−
a
∣
=
1
∣0
+
0
−
a
∣
=
1
∣
−
a
∣
⇒
d
=
a