Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The perpendicular distance from the origin to the normal drawn at any point on the curve
$x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)$ is

TS EAMCET 2020

Solution:

Given, $x=a(\cos \theta+\theta \sin \theta)$
and $y=a(\sin \theta-\theta \cos \theta)$
Now, $\frac{d y}{d x}=\frac{d y}{d \theta} \cdot \frac{d \theta}{d x}=\tan \theta=$ Slope of tangent
$\therefore \frac{d x}{d \theta}=\frac{d(a \cos \theta+a \theta \sin \theta)}{d \theta}$
$=\frac{d(a \cos \theta)}{d \theta}+\frac{d(a \theta \sin \theta)}{d \theta}$
$=a(-\sin \theta)+a \frac{d(\theta \sin \theta)}{d \theta}$
$=-a \sin \theta+a\left[\sin \theta \frac{d(\theta)}{d \theta}+\theta \frac{d}{d \theta}(\sin \theta)\right]$
$=-a \sin \theta+a \sin \theta+a \theta \cos \theta=a \theta \cos \theta$
Now, $\frac{d y}{d \theta}=\frac{d(a \sin \theta-a \theta \cos \theta)}{d \theta}$
$=\frac{d(a \sin \theta)}{d \theta}-\frac{d(a \theta \cos \theta)}{d \theta}$
$=a \cos \theta-a \frac{d(\theta \cos \theta)}{d \theta}$
$=a \cos \theta-a\left[\cos \theta \frac{d(\theta)}{d \theta}+\theta \frac{d}{d \theta}(\cos \theta)\right]$
$=a \cos \theta-a \cos \theta+a \theta \sin \theta=a \theta \sin \theta$
Now, $\frac{d y}{d x}=\frac{a \theta \sin \theta}{a \theta \cos \theta}=\tan \theta$
$\therefore $ Required equation of Normal
$(y-a \sin \theta+a \theta \cos \theta)$
$=\frac{-\cos \theta}{\sin \theta}(x-a \cos \theta-a \theta \sin \theta)$
$\Rightarrow \sin \theta(y-a \sin \theta+a \theta \cos \theta)$
$=-\cos \theta(x-a \cos \theta-a \theta \sin \theta)$
$\Rightarrow y \sin \theta-a \sin ^{2} \theta+x \cos \theta-a \cos ^{2} \theta$
$=a \theta \sin \theta \cos \theta-a \theta \sin \theta \cos \theta$
$\Rightarrow y \sin \theta+x \cos \theta-a(1)=0$
$\Rightarrow x \cos \theta+y \sin \theta-a=0$
So, perpendicular distance from origin,
$d=\frac{|\cos \theta(0)+\sin \theta \cdot(0)-a|}{\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}}$
$=\frac{|0+0-a|}{\sqrt{1}}=\frac{|-a|}{1}$
$\Rightarrow d=a$