sinx+sin5x=sin3x ⇒2sin(2x+5x).cos(25x−x)=sin3x ⇒2sin3x.cos2x=sin3x ⇒sin3x(2cos2x−1)=0 ⇒sin3x=0 and 2cos2x−1=0 ⇒sin3x=sin0 and cos2x=21=cos3π ⇒3x=nπ and 2x=2nπ±3π ⇒x=3nπ and x=nπ±6π
where n∈z, ⇒x=0,3π,32π,33π
and x=6π,65π
For n=0,1,2,3....
So, the total number of solution lie between [0,π]x=0,6π,3π,32π,65π,33π