Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of solution of the equation sin x+ sin 5x= sin 3x tying in the interval [0, π ] is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of solution of the equation $ \sin x+\sin 5x=\sin 3x $ tying in the interval $ [0,\,\pi ] $ is
J & K CET
J & K CET 2011
A
$ 4 $
B
$ 6 $
C
$ 5 $
D
$ 2 $
Solution:
$ \sin x+\sin 5x=\sin 3x $
$ \Rightarrow $ $ 2\sin \left( \frac{x+5x}{2} \right).\cos \left( \frac{5x-x}{2} \right)=\sin 3x $
$ \Rightarrow $ $ 2\sin 3x.cos\,2x=sin3x $
$ \Rightarrow $ $ \sin 3x\,(2\cos \,2x-1)=0 $
$ \Rightarrow $ $ \sin 3x=0 $ and $ 2\cos 2x-1=0 $
$ \Rightarrow $ $ \sin 3x=sin0 $ and $ \cos 2x=\frac{1}{2}=\cos \frac{\pi }{3} $
$ \Rightarrow $ $ 3x=n\pi $ and $ 2x=2n\pi \pm \frac{\pi }{3} $
$ \Rightarrow $ $ x=\frac{n\pi }{3} $ and $ x=n\pi \pm \frac{\pi }{6} $
where $ n\in z, $
$ \Rightarrow $ $ x=0,\,\frac{\pi }{3},\frac{2\pi }{3},\frac{3\pi }{3} $
and $ x=\frac{\pi }{6},\frac{5\pi }{6} $
For $ n=0,1,2,3.... $
So, the total number of solution lie between
$ [0,\,\pi ] $ $ x=0,\frac{\pi }{6},\frac{\pi }{3},\frac{2\pi }{3},\frac{5\pi }{6},\frac{3\pi }{3} $