Let height and radius of cone is h and r respectively, h,r∈I
Given volume of cone = Surface area of cone 31πr2h=πrl+πr2 ⇒31πr2h=πrh2+r2+πr2 ⇒31rh=h2+r2+r[r=0] ⇒rh−3r=3h2+r2 ⇒r2h2+9r2−6hr2=9h2+9r2 ⇒h2(r2−9)=6hr2 ⇒h=r2−96r2 ⇒h=6(r2−9r2) ⇒h=6+r2−954 h and r are integer. ∴r2−9 is a factor of 54. ∴r2−9=1,2,3,6,9,18,27,54 r2=10,11,12,15,18,27,36,63 ∴r=6 only possible value. ∴h=6+36−954 =6+2=8 ∴r=6,h=8