Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of solid cones with integer radius and integer height each having its volume numerically equal to its total surface area is

KVPYKVPY 2018

Solution:

Let height and radius of cone is $h$ and $r$ respectively, $h, r \in I$
Given volume of cone $=$ Surface area of cone
$\frac{1}{3}\pi r^{2}h = \pi rl + \pi r^{2}$
$\Rightarrow \frac{1}{3} \pi r^{2}h = \pi r \sqrt{h^{2} +r^{2} } + \pi r^{2}$
$\Rightarrow \frac{1}{3} rh = \sqrt{h^{2} +r^{2}} +r \left[r\ne0\right] $
$\Rightarrow rh -3r = 3 \sqrt{h^{2} +r^{2}}$
$\Rightarrow r^{2}h^{2} + 9r^{2} - 6hr^{2} = 9h^{2} + 9r^{2}$
$\Rightarrow h^{2} \left(r^{2}-9\right) = 6hr^{2} $
$\Rightarrow h = \frac{6r^{2}}{r^{2} -9}$
$\Rightarrow h = 6\left(\frac{r^{2}}{r^{2} -9}\right) $
$ \Rightarrow h = 6+ \frac{54}{r^{2} - 9} $
$h$ and $r$ are integer.
$\therefore r^2 - 9$ is a factor of $54$.
$\therefore r^2 - 9 = 1, 2, 3, 6, 9, 18, 27, 54$
$r^2 = 10, 11, 12, 15, 18, 27, 36, 63$
$\therefore r = 6$ only possible value.
$\therefore h = 6 + \frac{54}{36-9}$
$= 6 + 2=8 $
$\therefore r = 6, h = 8$