Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of integral solution in set of x ∈(-10,10) which satisfy the inequality log (1/2)|(x)(x-3)| ≥ log 2|(x/x3-2 x2-2 x-3)|, is
Q. The number of integral solution in set of
x
∈
(
−
10
,
10
)
which satisfy the inequality
lo
g
2
1
∣
(
x
)
(
x
−
3
)
∣
≥
lo
g
2
∣
∣
x
3
−
2
x
2
−
2
x
−
3
x
∣
∣
, is
241
108
Continuity and Differentiability
Report Error
A
9
B
11
C
13
D
15
Solution:
lo
g
2
∣
x
x
−
3
∣
∣
(
x
)
(
x
−
3
)
∣
≤
lo
g
2
(
x
2
+
x
+
1
)
⇒
lo
g
2
x
2
≤
lo
g
2
(
x
2
+
x
+
1
)
x
=
{
−
1
,
1
,
2
,
4
,
5
,
6
,
7
,
8
,
9
}