Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The number of integral solution in set of $x \in(-10,10)$ which satisfy the inequality $\log _{\frac{1}{2}}|(x)(x-3)| \geq \log _2\left|\frac{x}{x^3-2 x^2-2 x-3}\right|$, is

Continuity and Differentiability

Solution:

$ \log _2 \frac{|( x )( x -3)|}{\left|\frac{ x -3}{ x }\right|} \leq \log _2\left( x ^2+ x +1\right) $
$\Rightarrow \log _2 x ^2 \leq \log _2\left( x ^2+ x +1\right) $
$x =\{-1,1,2,4,5,6,7,8,9\}$