secθ+tanθ=3 ⇒1+sinθ=3cosθ(cosθ=0) ⇒3cosθ−sinθ=1 ⇒23cosθ−21sinθ=1 ⇒cosθcos6π−sinθsin6π=cos3π ⇒cos(θ+6π)=cos3π ⇒θ+6π=2nπ±3π(n∈Z) ⇒θ=2nπ−6π±3π(n∈Z)
= 2nπ+6π or 2nπ−2π
But we reject the value θ=2nπ−2π ∵cosθ=0 for this values of θ θ=2nπ+6π,n∈I
Thus, θ=6π is the only value of θ∈[0,2π]