Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The number of distinct solutions of sec θ + tan θ = √3, 0 ≤ θ ≤ 2π is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. The number of distinct solutions of $ \sec \theta + \tan \theta = \sqrt{3}, 0 \leq \theta \leq 2\pi\, is $
Trigonometric Functions
A
3
21%
B
5
23%
C
4
24%
D
none of these
32%
Solution:
$\sec \theta + \tan \theta = \sqrt{3}$
$\Rightarrow \:\: 1 + \sin \theta = \sqrt{3} \cos \theta (\cos \theta \, \neq 0)$
$\Rightarrow \:\:\: \sqrt{3} \cos \theta - \sin \theta = 1$
$\Rightarrow \:\: \frac{\sqrt{3}}{2} \cos \theta - \frac{1}{2} \sin \theta = 1$
$\Rightarrow \:\: \cos \theta \cos \frac{\pi}{6} - \sin \theta \sin \frac{\pi}{6} = \cos \frac{\pi}{3}$
$\Rightarrow \:\: \cos \left( \theta + \frac{\pi}{6} \right) = \cos \frac{\pi}{3}$
$\Rightarrow \: \: \theta + \frac{\pi}{6} = 2 n \pi \pm \frac{\pi}{3} ( n \in Z)$
$\Rightarrow $ $\theta = 2 n \pi - \frac{\pi}{6} \pm \frac{\pi}{3} ( n \in Z)$
= $2 \, n\pi + \frac{\pi}{6} $ or $2n \pi - \frac{\pi}{2}$
But we reject the value $\theta = 2 n\pi - \frac{\pi}{2}$
$\because\:\: \cos \theta = 0$ for this values of $\theta$
$\theta = 2 n \pi + \frac{\pi}{6} , n \in I$
Thus, $\theta = \frac{\pi}{6}$ is the only value of $\theta \in \, [0 , 2 \pi ] $