Q.
The normal at a point P on the ellipse x2+4y2=16 meets the X-axis at Q. If M is the mid-point of the line segment PQ, then the locus of M intersects the latus rectum of the given ellipse at the points
Given, 16x2+4y2=1
Here, a=4,b=2
Equation of normal 4xsecθ−2ycosecθ=12 M(27cosθ,sinθ)=(h,k) [say] ∴h=27cosθ⇒=72h=cosθ.... (i)
and k=sinθ.... (ii)
On squaring and adding Eqs. (i) and (ii), we get 494h2+k2=1[∵cos2θ+sin2θ=1]
Hence, locus is 494x2+y2=1 .. (iii)
For given ellipse, e2=1−164=43 ∴e=23 ∴x=±4×23=±23[∵x=±ae]… (iv)
On solving Eqs. (iii) and (iv), we get 494×12+y2=1 ⇒y2=1−4948=491 y=±71 ∴ Required points (±23,±71).