Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The minimum value of the twice differentiable function f(x)=∫ limits0x ex-1 f prime(t) d t-(x2-x+1) ex, x ∈ R, is :
Q. The minimum value of the twice differentiable function
f
(
x
)
=
0
∫
x
e
x
−
1
f
′
(
t
)
d
t
−
(
x
2
−
x
+
1
)
e
x
,
x
∈
R
, is :
1762
147
JEE Main
JEE Main 2022
Integrals
Report Error
A
−
e
2
B
−
2
e
C
−
e
D
e
2
Solution:
f
(
x
)
=
e
x
⋅
0
∫
x
e
t
f
′
(
t
)
d
t
f
′
(
x
)
=
e
x
⋅
0
∫
x
e
t
f
′
(
t
)
d
t
+
e
x
⋅
e
x
f
′
(
x
)
−
[
(
2
x
−
1
)
⋅
e
x
+
(
x
2
−
x
+
1
)
⋅
e
x
]
0
∫
x
e
t
f
′
(
t
)
d
t
=
x
2
+
x
e
x
f
′
(
x
)
=
2
x
+
1
f
′
(
x
)
=
(
2
x
+
1
)
⋅
e
x
<
b
r
/
>
f
′
(
x
)
=
0
⇒
x
=
−
2
1
f
(
x
)
=
(
2
x
+
1
)
⋅
e
x
−
2
e
x
+
C
−
1
=
1
−
2
+
C
C
=
0
f
(
x
)
=
e
x
(
2
x
−
1
)
f
(
−
2
1
)
=
e
−
2