Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. The minimum value of the twice differentiable function f(x)=x0ex1f(t)dt(x2x+1)ex,xR, is :

JEE MainJEE Main 2022Integrals

Solution:

f(x)=exx0f(t)etdt
f(x)=exx0f(t)etdt+exf(x)ex
[(2x1)ex+(x2x+1)ex]
x0f(t)etdt=x2+x
f(x)ex=2x+1
f(x)=(2x+1)exf(x)=0x=12
f(x)=(2x+1)ex2ex+C
image
1=12+C
C=0
f(x)=ex(2x1)
f(12)=2e