Given equation of line is x⋅3cosθ+4sinθy=12 ⇒(4/cosθ)x+(3/sinθ)y=1..(i)
It intereset the coordinate axes at A(cosθ4,0) and B(0,sinθ3) ∴ Area of ΔOAB Δ=21×cosθ4×sinθ3 =sin2θ12..(ii)
Now, for area to be minimum, sin2θ should be maximum i.e., sin2θ=1 sin2θ∣≤1)(∵∣sin2θ∣≤1) ∴ Minimum area Δmin=112=12