Given equation of line is x⋅3cosθ+4sinθy=12 ⇒x(4/cosθ)+y(3/sinθ)=1..(i)
It intereset the coordinate axes at A(4cosθ,0) and B(0,3sinθ) ∴ Area of ΔOAB Δ=12×4cosθ×3sinθ =12sin2θ..(ii)
Now, for area to be minimum, sin2θ should be maximum i.e., sin2θ=1 sin2θ∣≤1)(∵|sin2θ|≤1) ∴ Minimum area Δmin=121=12