Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of the function f ( x )=( ln 2 x / x ) in [(1/2), 10] is
Q. The maximum value of the function
f
(
x
)
=
x
l
n
2
x
in
[
2
1
,
10
]
is
632
116
Application of Derivatives
Report Error
A
2
ln
2
(
2
)
B
e
2
4
C
10
l
n
2
10
D
none
Solution:
f
′
(
x
)
=
x
2
x
2
l
n
x
⋅
x
1
−
l
n
2
x
f
′
(
x
)
=
x
2
l
n
x
(
2
−
ln
x
)
f
(
1
)
=
0
(local minima)
f
(
e
2
)
=
e
2
4
(local maxima)
∴
Maximum occurs at
x
=
2
1
f
(
2
1
)
=
2
ln
2
2