Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
The maximum value of (Log x/x) in (2, ∞) is
Q. The maximum value of
x
L
o
g
x
in
(
2
,
∞
)
is
2825
229
KCET
KCET 2008
Application of Derivatives
Report Error
A
1
18%
B
e
2
20%
C
e
24%
D
e
1
38%
Solution:
Let
y
=
x
l
o
g
x
On differentiating w.r.t.
x
, we get
d
x
d
y
=
x
2
x
⋅
x
1
−
l
o
g
x
.1
=
x
2
1
−
l
o
g
x
For maxima, put
d
x
d
y
=
0
⇒
x
2
1
−
l
o
g
x
=
0
⇒
lo
g
x
=
1
⇒
x
−
e
Now,
d
x
2
d
2
y
=
(
x
2
)
2
x
2
(
−
x
1
)
−
(
1
−
l
o
g
x
)
2
x
At
x
=
e
,
d
x
2
d
2
y
≤
0
, maxima
∴
The maximum value at
x
=
e
is
y
=
e
l
o
g
e
=
e
1